博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
oracle分析函数Rank, Dense_rank, row_number
阅读量:6408 次
发布时间:2019-06-23

本文共 3865 字,大约阅读时间需要 12 分钟。

hot3.png

一、使用rownum为记录排名:
在前面一篇《Oracle开发专题之:分析函数》,我们认识了分析函数的基本应用,现在我们再来考虑下面几个问题:
对所有客户按订单总额进行排名
按区域和客户订单总额进行排名
找出订单总额排名前13位的客户
找出订单总额最高、最低的客户
找出订单总额排名前25%的客户
按照前面第一篇文章的思路,我们只能做到对各个分组的数据进行统计,如果需要排名的话那么只需要简单地加上rownum不就行了吗?事实情况是否如此想象般简单,我们来实践一下。
1】测试环境:

SQL> desc user_order;

 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 REGION_ID                                          NUMBER(2)
 CUSTOMER_ID                                  NUMBER(2)
 CUSTOMER_SALES                          NUMBER

2】测试数据:

SQL> select * from user_order order by customer_sales;

 REGION_ID CUSTOMER_ID CUSTOMER_SALES
---------- ----------- --------------
         5           1              151162
        10          29             903383
         6           7              971585
        10          28            986964
         9          21           1020541
         9          22           1036146
         8          16           1068467
         6           8            1141638
         5           3            1161286
         5           5            1169926
         8          19           1174421
         7          12           1182275
         7          11           1190421
         6          10           1196748
         6           9            1208959
        10          30          1216858
         5             2                1224992
           9             24              1224992
           9             23              1224992
           
8
          18           1253840
         7          15           1255591
         7          13           1310434
        10          27          1322747
         8          20           1413722
         6           6            1788836
        10          26          1808949
         5           4            1878275
         7          14           1929774
         8          17           1944281
         9          25           2232703
30 rows selected.

注意这里有3条记录的订单总额是一样的。假如我们现在需要筛选排名前12位的客户,如果使用rownum会有什么样的后果呢?

SQL> select rownum, t.*

  2    from (select * 
  3            from user_order
  4           order by customer_sales desc) t
  5   where rownum <= 12
  6   order by customer_sales desc;
    ROWNUM  REGION_ID CUSTOMER_ID CUSTOMER_SALES
---------- ---------- ----------- --------------
         1          9                 25        2232703
         2          8                 17        1944281
         3          7                 14        1929774
         4          5                   4        1878275
         5         10                26        1808949
         6          6                   6        1788836
         7          8                 20        1413722
         8         10                27        1322747
         9          7                13        1310434
        10          7               15        1255591
        11          8               18        1253840
          12             5                     2          1224992
12 rows selected.

很明显假如只是简单地按rownum进行排序的话,我们漏掉了另外两条记录(参考上面的结果)
二、使用分析函数来为记录排名:
针对上面的情况,Oracle8i开始就提供了3个分析函数:randdense_rankrow_number来解决诸如此类的问题,下面我们来看看这3个分析函数的作用以及彼此之间的区别:
Rank
Dense_rankRow_number函数为每条记录产生一个从1开始至N的自然数,N的值可能小于等于记录的总数。这3个函数的唯一区别在于当碰到相同数据时的排名策略。
ROW_NUMBER

Row_number函数返回一个唯一的值,当碰到相同数据时,排名按照记录集中记录的顺序依次递增。 

DENSE_RANK

Dense_rank函数返回一个唯一的值,除非当碰到相同数据时,此时所有相同数据的排名都是一样的。 

RANK

Rank函数返回一个唯一的值,除非遇到相同的数据时,此时所有相同数据的排名是一样的,同时会在最后一条相同记录和下一条不同记录的排名之间空出排名。
这样的介绍有点难懂,我们还是通过实例来说明吧,下面的例子演示了3个不同函数在遇到相同数据时不同排名策略:

SQL> select region_id, customer_id, sum(customer_sales) total,

  2         rank() over(order by sum(customer_sales) desc) rank,
  3         dense_rank() over(order by sum(customer_sales) desc) dense_rank,
  4         row_number() over(order by sum(customer_sales) desc) row_number
  5    from user_order
  6   group by region_id, customer_id;
 REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER
---------- ----------- ---------- ---------- ---------- ----------
            
         8          18                1253840         11         11         11
         5           2                 1224992         12         12         12
         9          23                1224992         12         12         13
         9          24                1224992         12         12         14
        10          30               1216858         15           13            15
    
30 rows selected.

请注意上面的绿色高亮部分,这里生动的演示了3种不同的排名策略:
对于第一条相同的记录,3种函数的排名都是一样的:12
当出现第二条相同的记录时,RankDense_rank依然给出同样的排名12;而row_number则顺延递增为13,依次类推至第三条相同的记录
当排名进行到下一条不同的记录时,可以看到Rank函数在1215之间空出了13,14的排名,因为这2个排名实际上已经被第二、三条相同的记录占了。而Dense_rank则顺序递增。row_number函数也是顺序递增
比较上面3种不同的策略,我们在选择的时候就要根据客户的需求来定夺了:
假如客户就只需要指定数目的记录,那么采用row_number是最简单的,但有漏掉的记录的危险
假如客户需要所有达到排名水平的记录,那么采用rankdense_rank是不错的选择。至于选择哪一种则看客户的需要,选择dense_rank或得到最大的记录
三、使用分析函数为记录进行分组排名:
上面的排名是按订单总额来进行排列的,现在跟进一步:假如是为各个地区的订单总额进行排名呢?这意味着又多了一次分组操作:对记录按地区分组然后进行排名。幸亏Oracle也提供了这样的支持,我们所要做的仅仅是在over函数中order by的前面增加一个分组子句:partition by region_id

SQL> select region_id, customer_id, 

               sum(customer_sales) total,
  2         rank() over(partition by region_id
                        order by sum(customer_sales) desc) rank,
  3         dense_rank() over(partition by region_id
                        order by sum(customer_sales) desc) dense_rank,
  4         row_number() over(partition by region_id
                        order by sum(customer_sales) desc) row_number
  5    from user_order
  6   group by region_id, customer_id;
 REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER
---------- ----------- ---------- ---------- ---------- ----------
         5           4                1878275          1          1          1
         5           2                1224992          2          2          2
         5           5                1169926          3          3          3
         6           6                1788836          1          1          1
         6           9                1208959          2          2          2
         6          10               1196748          3          3          3       
  
30 rows selected.

现在我们看到的排名将是基于各个地区的,而非所有区域的了!Partition by 子句在排列函数中的作用是将一个结果集划分成几个部分,这样排列函数就能够应用于这各个子集。

转载于:https://my.oschina.net/HyacinthYuan/blog/551121

你可能感兴趣的文章
CLI使用案例1:快速创建Logtail配置
查看>>
Qt Creator在Windows上的调试器安装与配置
查看>>
使用Github Pages和Hexo构建个人博客
查看>>
C# 中的事件含义介绍
查看>>
ES shard unassigned的解决方法汇总
查看>>
log4net 中logger默认日志等级的设计意图详解
查看>>
两道概率题-供大家周末把玩
查看>>
Windows Azure Affinity Groups (1) Windows Azure Affinity Groups(地缘组)的重要性
查看>>
tensorflow:流程,概念和简单代码注释
查看>>
【转】R语言笔记--颜色的使用
查看>>
【嵌入式开发技术之Qtopia】安装和交叉编译文档(2)——编译安装X86主机版各种QT...
查看>>
android:Error inflating fragment from layout androidsupportv4
查看>>
View Transform(视图变换)详解
查看>>
oracle创建表相关
查看>>
UNITY把3D模型显示在UI层级上的思路
查看>>
【Linux命令使用】任务控制相关命令
查看>>
【OSS最佳实践】浅谈OSS跨域功能
查看>>
55种网页常用小技巧(javascript)
查看>>
php 环境搭建(windows php+apache)
查看>>
在ASPNET中使用JS集锦
查看>>